Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Curr Top Med Chem ; 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: covidwho-2304070

RESUMEN

The Coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2), has resulted in millions of deaths and threatens public health and safety. Nowadays, modern society has faced a new challenging problem, the emergence of novel SARS-CoV-2 variants of concern (VOCs). In this context, the Omicron (B.1.1.529) variant, having more than 60 mutations when compared to its ancestral wild-type virus, has infected many individuals around the world. It is rapidly spread person-to-person due to its increased transmissibility. Additionally, it was demonstrated that this newest variant and its subvariants have the capability of evading the host immune system, being resistant to neutralizing antibodies. Moreover, it has been proven to be resistant to monoclonal antibodies and several different vaccines. This ability is associated with a huge number of mutations associated with its spike (S) glycoprotein, which presents at least 15 mutations. These mutations are able to modify the way how this virus interacts with the host angiotensin-converting enzyme 2 (ACE2), increasing its infectivity and making the therapeutic alternatives more ineffective. Concerning its chymotrypsin-like picornavirus 3C-like protease (3CLpro) and RNA-dependent RNA polymerase (RdRp), it has been seen that some compounds can be active against different SARS-CoV-2 variants, in a similar mode than its wild-type precursor. This broad spectrum of action for some drugs could be attributed to the fact that the currently identified mutations found in 3CLpro and RNA proteins being localized near the catalytic binding site, conserving their activities. Herein this review, we provide a great and unprecedented compilation of all identified and/or repurposed compounds/drugs against this threatening variant, Omicron. The main targets for those compounds are the protein-protein interface (PPI) of S protein with ACE2, 3CLpro, RdRp, and Nucleocapsid (N) protein. Some of these studies have presented only in silico data, having a lack of experimental results to prove their findings. However, these should be considered here since other research teams can use their observations to design and investigate new potential agents. Finally, we believe that our review will contribute to several studies that are in progress worldwide, compiling several interesting aspects about VOCs associated with SARS-CoV2, as well as describing the results for different chemical classes of compounds that could be promising as prototypes for designing new and more effective antiviral agents.

2.
Drug Discov Today ; 28(3): 103468, 2023 03.
Artículo en Inglés | MEDLINE | ID: covidwho-2257250

RESUMEN

The (re)emergence of multidrug-resistant viruses and the emergence of new viruses highlight the urgent and ongoing need for new antiviral agents. The use of peptidomimetics as therapeutic drugs has often been associated with advantages, such as enhanced binding affinity, improved metabolic stability, and good bioavailability profiles. The development of novel antivirals is currently driven by strategies of converting peptides into peptidomimetic derivatives. In this review, we outline different structural modification design strategies for developing novel peptidomimetics as antivirals, involving N- or C-cap terminal structure modifications, pseudopeptides, amino acid modifications, inverse-peptides, cyclization, and molecular hybridization. We also present successful recent examples of peptidomimetic designs.


Asunto(s)
Peptidomiméticos , Antivirales , Química Farmacéutica , Péptidos/química
3.
J Med Virol ; 95(3): e28609, 2023 03.
Artículo en Inglés | MEDLINE | ID: covidwho-2254690

RESUMEN

The ongoing pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has posed a major public health threat worldwide and emphasizes an urgent need for effective therapeutics. Recently, Ordonez et al. identified sulforaphane (SFN) as a novel coronavirus inhibitor both in vitro and in mice, but the mechanism of action remains elusive. In this study, we independently discovered SFN for its inhibitory effect against SARS-CoV-2 using a target-based screening approach, identifying the viral 3-chymotrypsin-like protease (3CLpro ) as a target of SFN. Mechanistically, SFN inhibits 3CLpro in a reversible, mixed-type manner. Moreover, enzymatic kinetics studies reveal that SFN is a slow-binding inhibitor, following a two-step interaction. Initially, an encounter complex forms by specific binding of SFN to the active pocket of 3CLpro ; subsequently, the isothiocyanate group of SFN as "warhead" reacts covalently to the catalytic cysteine in a slower velocity, stabilizing the SFN-3CLpro complex. Our study has identified a new lead of the covalent 3CLpro inhibitors which has potential to be developed as a therapeutic agent to treat SARS-CoV-2 infection.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Ratones , Quimasas , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/uso terapéutico , Isotiocianatos/farmacología , Antivirales/uso terapéutico
4.
Molecules ; 28(1)2022 Dec 25.
Artículo en Inglés | MEDLINE | ID: covidwho-2240863

RESUMEN

The Coronavirus Disease 2019 (COVID-19) and dengue fever (DF) pandemics both remain to be significant public health concerns in the foreseeable future. Anti-SARS-CoV-2 drugs and vaccines are both indispensable to eliminate the epidemic situation. Here, two piperazine-based polyphenol derivatives DF-47 and DF-51 were identified as potential inhibitors directly blocking the active site of SARS-CoV-2 and DENV RdRp. Data through RdRp inhibition screening of an in-house library and in vitro antiviral study selected DF-47 and DF-51 as effective inhibitors of SARS-CoV-2/DENV polymerase. Moreover, in silico simulation revealed stable binding modes between the DF-47/DF-51 and SARS-CoV-2/DENV RdRp, respectively, including chelating with Mg2+ near polymerase active site. This work discovered the inhibitory effect of two polyphenols on distinct viral RdRp, which are expected to be developed into broad-spectrum, non-nucleoside RdRp inhibitors with new scaffold.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Polifenoles/farmacología , ARN Polimerasa Dependiente del ARN/metabolismo , Antivirales/química , Simulación del Acoplamiento Molecular
5.
Int J Mol Sci ; 24(2)2023 Jan 07.
Artículo en Inglés | MEDLINE | ID: covidwho-2216327

RESUMEN

This study presents proof of concept for designing a novel HIV-1 covalent inhibitor targeting the highly conserved Tyr318 in the HIV-1 non-nucleoside reverse transcriptase inhibitors binding pocket to improve the drug resistance profiles. The target inhibitor ZA-2 with a fluorosulfate warhead in the structure was found to be a potent inhibitor (EC50 = 11-246 nM) against HIV-1 IIIB and a panel of NNRTIs-resistant strains, being far superior to those of NVP and EFV. Moreover, ZA-2 was demonstrated with lower cytotoxicity (CC50 = 125 µM). In the reverse transcriptase inhibitory assay, ZA-2 exhibited an IC50 value of 0.057 µM with the ELISA method, and the MALDI-TOF MS data demonstrated the covalent binding mode of ZA-2 with the enzyme. Additionally, the molecular simulations have also demonstrated that compounds can form covalent binding to the Tyr318.


Asunto(s)
Fármacos Anti-VIH , VIH-1 , Inhibidores de la Transcriptasa Inversa/farmacología , Inhibidores de la Transcriptasa Inversa/química , VIH-1/metabolismo , Fármacos Anti-VIH/farmacología , Fármacos Anti-VIH/química , Transcriptasa Inversa del VIH/metabolismo , Diseño de Fármacos , Relación Estructura-Actividad
6.
J Med Chem ; 65(24): 16902-16917, 2022 12 22.
Artículo en Inglés | MEDLINE | ID: covidwho-2150977

RESUMEN

The spread of SARS-CoV-2 keeps threatening human life and health, and small-molecule antivirals are in demand. The main protease (Mpro) is an effective and highly conserved target for anti-SARS-CoV-2 drug design. Herein, we report the discovery of potent covalent non-peptide-derived Mpro inhibitors. A series of covalent compounds with a piperazine scaffold containing different warheads were designed and synthesized. Among them, GD-9 was identified as the most potent compound with a significant enzymatic inhibition of Mpro (IC50 = 0.18 µM) and good antiviral potency against SARS-CoV-2 (EC50 = 2.64 µM), similar to that of remdesivir (EC50 = 2.27 µM). Additionally, GD-9 presented favorable target selectivity for SARS-CoV-2 Mpro versus human cysteine proteases. The X-ray co-crystal structure confirmed our original design concept showing that GD-9 covalently binds to the active site of Mpro. Our nonpeptidic covalent inhibitors provide a basis for the future development of more efficient COVID-19 therapeutics.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2/metabolismo , Proteínas no Estructurales Virales/metabolismo , Antivirales/farmacología , Antivirales/química , Piperazinas/farmacología , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/química , Simulación del Acoplamiento Molecular
7.
Bioorganic & medicinal chemistry ; 2022.
Artículo en Inglés | EuropePMC | ID: covidwho-1780860

RESUMEN

RNA viruses have always been a great threat to human civilization, and these have evolved along with humanity's progress. In parallel, this large group of viruses constitutes a great challenge for humankind, which is not yet properly prepared for. The most indisputable proof for this fact is verified in the COVID-19 pandemic (SARS-CoV-2), which resulted in immeasurable economic impacts, as well as thousands of deaths worldwide. Still, other viruses were able to leave their negative marks on the history of our modern society, such as Hepatitis C (HCV), Influenza (INFV), HIV, Ebola (EBOV), Marburg (MARV), Zika (ZIKV), MERS- and SARS-CoV, among others.

8.
Chem Phys ; 564: 111709, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: covidwho-2041614

RESUMEN

Inhibiting the biological activity of SARS-CoV-2 Mpro can prevent viral replication. In this context, a hybrid approach using knowledge- and physics-based methods was proposed to characterize potential inhibitors for SARS-CoV-2 Mpro. Initially, supervised machine learning (ML) models were trained to predict a ligand-binding affinity of ca. 2 million compounds with the correlation on a test set of R = 0.748 ± 0.044 . Atomistic simulations were then used to refine the outcome of the ML model. Using LIE/FEP calculations, nine compounds from the top 100 ML inhibitors were suggested to bind well to the protease with the domination of van der Waals interactions. Furthermore, the binding affinity of these compounds is also higher than that of nirmatrelvir, which was recently approved by the US FDA to treat COVID-19. In addition, the ligands altered the catalytic triad Cys145 - His41 - Asp187, possibly disturbing the biological activity of SARS-CoV-2.

9.
J Med Chem ; 65(19): 13343-13364, 2022 10 13.
Artículo en Inglés | MEDLINE | ID: covidwho-2028635

RESUMEN

The continuous spread of SARS-CoV-2 calls for more direct-acting antiviral agents to combat the highly infectious variants. The main protease (Mpro) is an promising target for anti-SARS-CoV-2 drug design. Here, we report the discovery of potent non-covalent non-peptide Mpro inhibitors featuring a 1,2,4-trisubstituted piperazine scaffold. We systematically modified the non-covalent hit MCULE-5948770040 by structure-based rational design combined with multi-site binding and privileged structure assembly strategies. The optimized compound GC-14 inhibits Mpro with high potency (IC50 = 0.40 µM) and displays excellent antiviral activity (EC50 = 1.1 µM), being more potent than Remdesivir. Notably, GC-14 exhibits low cytotoxicity (CC50 > 100 µM) and excellent target selectivity for SARS-CoV-2 Mpro (IC50 > 50 µM for cathepsins B, F, K, L, and caspase 3). X-ray co-crystal structures prove that the inhibitors occupy multiple subpockets by critical non-covalent interactions. These studies may provide a basis for developing a more efficient and safer therapy for COVID-19.


Asunto(s)
COVID-19 , Hepatitis C Crónica , Antivirales/química , Antivirales/farmacología , Caspasa 3 , Catepsinas , Proteasas 3C de Coronavirus , Cisteína Endopeptidasas/metabolismo , Humanos , Simulación del Acoplamiento Molecular , Ácido Orótico/análogos & derivados , Piperazinas/farmacología , Inhibidores de Proteasas/química , Inhibidores de Proteasas/farmacología , SARS-CoV-2
10.
Adv Sci (Weinh) ; 9(30): e2203388, 2022 10.
Artículo en Inglés | MEDLINE | ID: covidwho-2013319

RESUMEN

Coronavirus disease 2019 continues to spread worldwide. Given the urgent need for effective treatments, many clinical trials are ongoing through repurposing approved drugs. However, clinical data regarding the cardiotoxicity of these drugs are limited. Human pluripotent stem cell-derived cardiomyocytes (hCMs) represent a powerful tool for assessing drug-induced cardiotoxicity. Here, by using hCMs, it is demonstrated that four antiviral drugs, namely, apilimod, remdesivir, ritonavir, and lopinavir, exhibit cardiotoxicity in terms of inducing cell death, sarcomere disarray, and dysregulation of calcium handling and contraction, at clinically relevant concentrations. Human engineered heart tissue (hEHT) model is used to further evaluate the cardiotoxic effects of these drugs and it is found that they weaken hEHT contractile function. RNA-seq analysis reveals that the expression of genes that regulate cardiomyocyte function, such as sarcomere organization (TNNT2, MYH6) and ion homeostasis (ATP2A2, HCN4), is significantly altered after drug treatments. Using high-throughput screening of approved drugs, it is found that ceftiofur hydrochloride, astaxanthin, and quetiapine fumarate can ameliorate the cardiotoxicity of remdesivir, with astaxanthin being the most prominent one. These results warrant caution and careful monitoring when prescribing these therapies in patients and provide drug candidates to limit remdesivir-induced cardiotoxicity.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Células Madre Pluripotentes Inducidas , Células Madre Pluripotentes , Humanos , Cardiotoxicidad/etiología , Cardiotoxicidad/metabolismo , Miocitos Cardíacos/metabolismo , Células Madre Pluripotentes Inducidas/fisiología , Calcio/metabolismo , Lopinavir/metabolismo , Lopinavir/farmacología , Ritonavir/metabolismo , Ritonavir/farmacología , Fumarato de Quetiapina/metabolismo , Fumarato de Quetiapina/farmacología , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Células Madre Pluripotentes/metabolismo , Antivirales/efectos adversos
11.
Phytochemistry ; 201: 113284, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: covidwho-1886026

RESUMEN

In this work, a bioassay-guided fractionation strategy was used to isolate 26 phenolic compounds from the ethyl acetate partition of an ethanol extract of the aerial parts of Glycyrrhiza uralensis Fisch. ex DC. Among them, 8 prenylated phenolic compounds (glycyuralins Q-X) were described for the first time. The two enantiomers of glycyuralin Q were purified and their absolute configurations were established by ECD spectral calculations. (1″R, 2″S)-glycyuralin Q and (1″S, 2″R)-glycyuralin Q showed significant inhibitory activities against SARS-CoV-2 virus proteases 3CLpro with IC50 values of 1.5 ± 1.0 and 4.0 ± 0.3 µM, and PLpro with IC50 values of 2.4 ± 0.2 and 1.9 ± 0.1 µM, respectively. Four compounds showed potent cytotoxic activities against A549, Huh-7, and HepG2 human cancer cells with IC50 values ranging from 0.5 to 2.5 µM.


Asunto(s)
COVID-19 , Glycyrrhiza uralensis , Glycyrrhiza , Humanos , Fenoles/farmacología , Componentes Aéreos de las Plantas , SARS-CoV-2
12.
Curr Med Chem ; 29(4): 682-699, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-1742083

RESUMEN

COVID-19 is an infectious disease caused by SARS-CoV-2. The life cycle of SARS-CoV-2 includes the entry into the target cells, replicase translation, replicating and transcribing genomes, translating structural proteins, assembling and releasing new virions. Entering host cells is a crucial stage in the early life cycle of the virus, and blocking this stage can effectively prevent virus infection. SARS enters the target cells mediated by the interaction between the viral S protein and the target cell surface receptor angiotensin- converting enzyme 2 (ACE2), as well as the cleavage effect of a type-II transmembrane serine protease (TMPRSS2) on the S protein. Therefore, the ACE2 receptor and TMPRSS2 are important targets for SARS-CoV-2 entry inhibitors. Herein, we provide a concise report/information on drugs with potential therapeutic value targeting virus-ACE2 or virus-TMPRSS2 interactions to provide a reference for the design and discovery of potential entry inhibitors against SARS-CoV-2.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2 , Humanos , Serina Endopeptidasas , Glicoproteína de la Espiga del Coronavirus/metabolismo , Glicoproteína de la Espiga del Coronavirus/farmacología , Internalización del Virus
13.
Molecules ; 27(3)2022 Jan 27.
Artículo en Inglés | MEDLINE | ID: covidwho-1674735

RESUMEN

Viral infections pose a persistent threat to human health. The relentless epidemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a global health problem, with millions of infections and fatalities so far. Traditional approaches such as random screening and optimization of lead compounds by organic synthesis have become extremely resource- and time-consuming. Various modern innovative methods or integrated paradigms are now being applied to drug discovery for significant resistance in order to simplify the drug process. This review provides an overview of newly emerging antiviral strategies, including proteolysis targeting chimera (PROTAC), ribonuclease targeting chimera (RIBOTAC), targeted covalent inhibitors, topology-matching design and antiviral drug delivery system. This article is dedicated to Prof. Dr. Erik De Clercq, an internationally renowned expert in the antiviral drug research field, on the occasion of his 80th anniversary.


Asunto(s)
Antivirales/farmacología , Antivirales/uso terapéutico , Descubrimiento de Drogas/métodos , Diseño de Fármacos/métodos , Diseño de Fármacos/tendencias , Descubrimiento de Drogas/tendencias , Reposicionamiento de Medicamentos/métodos , Reposicionamiento de Medicamentos/tendencias , Humanos , Virosis/tratamiento farmacológico
14.
Signal transduction and targeted therapy ; 7(1), 2022.
Artículo en Inglés | EuropePMC | ID: covidwho-1652408

RESUMEN

As a highly pathogenic human coronavirus, SARS-CoV-2 has to counteract an intricate network of antiviral host responses to establish infection and spread. The nucleic acid-induced stress response is an essential component of antiviral defense and is closely related to antiviral innate immunity. However, whether SARS-CoV-2 regulates the stress response pathway to achieve immune evasion remains elusive. In this study, SARS-CoV-2 NSP5 and N protein were found to attenuate antiviral stress granule (avSG) formation. Moreover, NSP5 and N suppressed IFN expression induced by infection of Sendai virus or transfection of a synthetic mimic of dsRNA, poly (I:C), inhibiting TBK1 and IRF3 phosphorylation, and restraining the nuclear translocalization of IRF3. Furthermore, HEK293T cells with ectopic expression of NSP5 or N protein were less resistant to vesicular stomatitis virus infection. Mechanistically, NSP5 suppressed avSG formation and disrupted RIG-I–MAVS complex to attenuate the RIG-I–mediated antiviral immunity. In contrast to the multiple targets of NSP5, the N protein specifically targeted cofactors upstream of RIG-I. The N protein interacted with G3BP1 to prevent avSG formation and to keep the cofactors G3BP1 and PACT from activating RIG-I. Additionally, the N protein also affected the recognition of dsRNA by RIG-I. This study revealed the intimate correlation between SARS-CoV-2, the stress response, and innate antiviral immunity, shedding light on the pathogenic mechanism of COVID-19.

16.
Acta Pharm Sin B ; 12(2): 581-599, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: covidwho-1377653

RESUMEN

Novel therapies are urgently needed to improve global treatment of SARS-CoV-2 infection. Herein, we briefly provide a concise report on the medicinal chemistry strategies towards the development of effective SARS-CoV-2 inhibitors with representative examples in different strategies from the medicinal chemistry perspective.

17.
Adv Exp Med Biol ; 1322: 219-260, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1309020

RESUMEN

Recent coronavirus outbreaks of SARS-CoV-1 (2002-2003), MERS-CoV (since 2012), and SARS-CoV-2 (since the end of 2019) are examples of how viruses can damage health care and generate havoc all over the world. Coronavirus can spread quickly from person to person causing high morbidity and mortality. Unfortunately, the antiviral armamentarium is insufficient to fight these infections. In this chapter, we provide a detailed summary of the current situation in the development of drugs directed against pandemic human coronaviruses. Apart from the recently licensed remdesivir, other antiviral agents discussed in this review include molecules targeting viral components (e.g., RNA polymerase inhibitors, entry inhibitors, or protease inhibitors), compounds interfering with virus-host interactions, and drugs identified in large screening assays, effective against coronavirus replication, but with an uncertain mechanism of action.


Asunto(s)
COVID-19 , Coronavirus del Síndrome Respiratorio de Oriente Medio , Antivirales/farmacología , Antivirales/uso terapéutico , Humanos , Pandemias , SARS-CoV-2
18.
Signal Transduct Target Ther ; 5(1): 299, 2020 12 28.
Artículo en Inglés | MEDLINE | ID: covidwho-997814

RESUMEN

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has quickly spread worldwide and has affected more than 10 million individuals. A typical feature of COVID-19 is the suppression of type I and III interferon (IFN)-mediated antiviral immunity. However, the molecular mechanism by which SARS-CoV-2 evades antiviral immunity remains elusive. Here, we reported that the SARS-CoV-2 membrane (M) protein inhibits the production of type I and III IFNs induced by the cytosolic dsRNA-sensing pathway mediated by RIG-I/MDA-5-MAVS signaling. In addition, the SARS-CoV-2 M protein suppresses type I and III IFN induction stimulated by SeV infection or poly (I:C) transfection. Mechanistically, the SARS-CoV-2 M protein interacts with RIG-I, MAVS, and TBK1, thus preventing the formation of the multiprotein complex containing RIG-I, MAVS, TRAF3, and TBK1 and subsequently impeding the phosphorylation, nuclear translocation, and activation of IRF3. Consequently, ectopic expression of the SARS-CoV-2 M protein facilitates the replication of vesicular stomatitis virus. Taken together, these results indicate that the SARS-CoV-2 M protein antagonizes type I and III IFN production by targeting RIG-I/MDA-5 signaling, which subsequently attenuates antiviral immunity and enhances viral replication. This study provides insight into the interpretation of SARS-CoV-2-induced antiviral immune suppression and illuminates the pathogenic mechanism of COVID-19.


Asunto(s)
COVID-19/metabolismo , Proteína 58 DEAD Box/metabolismo , Interferón Tipo I/biosíntesis , Helicasa Inducida por Interferón IFIH1/metabolismo , Interferones/biosíntesis , SARS-CoV-2/metabolismo , Transducción de Señal , Proteínas de la Matriz Viral/metabolismo , Animales , COVID-19/genética , Chlorocebus aethiops , Proteína 58 DEAD Box/genética , Células HEK293 , Células HeLa , Humanos , Interferón Tipo I/genética , Helicasa Inducida por Interferón IFIH1/genética , Interferones/genética , Receptores Inmunológicos , SARS-CoV-2/genética , Células Vero , Proteínas de la Matriz Viral/genética , Interferón lambda
20.
J Med Chem ; 63(21): 12256-12274, 2020 11 12.
Artículo en Inglés | MEDLINE | ID: covidwho-598389

RESUMEN

Recently, a novel coronavirus initially designated 2019-nCoV but now termed SARS-CoV-2 has emerged and raised global concerns due to its virulence. SARS-CoV-2 is the etiological agent of "coronavirus disease 2019", abbreviated to COVID-19, which despite only being identified at the very end of 2019, has now been classified as a pandemic by the World Health Organization (WHO). At this time, no specific prophylactic or postexposure therapy for COVID-19 are currently available. Viral entry is the first step in the SARS-CoV-2 lifecycle and is mediated by the trimeric spike protein. Being the first stage in infection, entry of SARS-CoV-2 into host cells is an extremely attractive therapeutic intervention point. Within this review, we highlight therapeutic intervention strategies for anti-SARS-CoV, MERS-CoV, and other coronaviruses and speculate upon future directions for SARS-CoV-2 entry inhibitor designs.


Asunto(s)
Antivirales/uso terapéutico , Tratamiento Farmacológico de COVID-19 , SARS-CoV-2/efectos de los fármacos , Internalización del Virus/efectos de los fármacos , Secuencia de Aminoácidos , Enzima Convertidora de Angiotensina 2/química , Enzima Convertidora de Angiotensina 2/metabolismo , Inhibidores de la Enzima Convertidora de Angiotensina/uso terapéutico , Animales , COVID-19/prevención & control , Catepsina L/antagonistas & inhibidores , Línea Celular , Humanos , Dominios Proteicos , Glicoproteína de la Espiga del Coronavirus/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA